Temporal shifts in phytoplankton communities in Cam Ranh Bay

Huynh Thi Ngoc Duyen, Tran Thi Minh Hue, Tran Thi Le Van, Nguyen-Ngoc Lam, Doan-Nhu Hai
Author affiliations

Authors

  • Huynh Thi Ngoc Duyen Institute of Oceanography, VAST, Vietnam
  • Tran Thi Minh Hue Institute of Oceanography, VAST, Vietnam
  • Tran Thi Le Van Institute of Oceanography, VAST, Vietnam
  • Nguyen-Ngoc Lam Institute of Oceanography, VAST, Vietnam
  • Doan-Nhu Hai Institute of Oceanography, VAST, Vietnam

DOI:

https://doi.org/10.15625/1859-3097/22732

Keywords:

Temporal shift of phytoplankton, SIMPER analysis, Cam Ranh Bay

Abstract

Phytoplankton communities can change rapidly in response to shifting environmental conditions. A dataset of phytoplankton and environmental factors in Cam Ranh Bay was analyzed to assess the temporal shifts in phytoplankton communities over both short-term (days, weeks) and long-term (seasons) periods. In this Bay, changes in phytoplankton compositions were insignificant found in short-term, while there was no clear pattern in abundance and biomass variation. Seasonally, significant changes in dominant phytoplankton were also observed, with dinoflagellates and diatoms predominating in the dry and wet seasons, respectively. Diatoms abundance and biomass were higher during the wet season, whereas dinoflagellate abundance was higher in the dry season. The dominant analysis revealed that some species prevailing throughout sampling periods, including Chaetoceros spp., Bacteriastrum sp., Coscinodiscus sp., Thalassionema frauenfeldii, Pleurosigma sp., and Protoperidinium spp. The pattern was clear seasonally, such as Chaetoceros diversus, Dictyocha fibula, and Tripos setaceus dominant in the dry season, and Guinardia striata, Leptocylindrus danicus, and Chaetoceros compressus in the wet season. Multidimensional scaling statistical analysis (NMDS) indicated both nitrate and nitrite impact on a diatom group, Bacillariophyceae, during the dry season, while other diatom groups, Mediophyceae, with phosphate and ammonium and Coscinodiscophyceae with temperature. In the wet season, Bacillariophyceae were closely related to nitrite, nitrate, and phosphate, whereas Mediophyceae were associated with ammonium and DIN. The density of Dinophyceae was inversely related to silicate, salinity, and fluorescence. Our results provide insights into how and which types of nutrients and temperature and salinity variations, influence the rapid changes in phytoplankton communities within coastal tropical embayment.

Downloads

Download data is not yet available.

References

[1] M. D. C. Calijuri, A. C. A. Dos Santos, and S. Jati, “Temporal changes in the phytoplankton community structure in a tropical and eutrophic reservoir (Barra Bonita, SP—Brazil),” Journal of Plankton Research, vol. 24, no. 7, pp. 617–634, 2002. DOI: 10.1093/plankt/24.7.617.

[2] C. S. Reynolds, “The response of phytoplankton communities to changing lake environments,” Swiss Journal of Hydrology, vol. 49, pp. 220–236, 1987. DOI: 10.1007/BF02538504.

[3] G. P. Harris, “Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models, and management,” Canadian Journal of Fisheries and Aquatic Sciences, vol. 37, no. 5, pp. 877–900, 1980. DOI: 10.1139/f80-117.

[4] G. Basterretxea, J. S. Font-Munoz, and I. Tuval, “Phytoplankton orientation in a turbulent ocean: a microscale perspective,” Frontiers in Marine Science, vol. 7, 185, 2020. DOI: 10.3389/fmars. 2020.00185.

[5] R. N. Arnott, M. Cherif, L. D. Bryant, and D. J. Wain, “Artificially generated turbulence: a review of phycological nanocosm, microcosm, and mesocosm experiments,” Hydrobiologia, vol. 848, pp. 961–991, 2021. DOI: 10.1007/s10750-020-04487-5.

[6] L. Naselli-Flores, T. Zohary, and J. Padisák, “Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds,” Hydrobiologia, vol. 848, no. 1, pp. 7–30, 2021. DOI: 10.1007/s10750-020-04217-x.

[7] T. Weisse, B. Gröschl, and V. Bergkemper, “Phytoplankton response to short-term temperature and nutrient changes,” Limnologica, vol. 59, pp. 78–89, 2016. DOI: 10.1016/j.limno.2016.05.002.

[8] C. L. Follett, S. Dutkiewicz, F. Ribalet, E. Zakem, D. Caron, E. V. Armbrust, and M. J. Follows, “Trophic interactions with heterotrophic bacteria limit the range of Prochlorococcus,” Proceedings of the National Academy of Sciences, vol. 119, no. 2, e2110993118, 2022. DOI: 10.1073/pnas.2110993118.

[9] J. M. González-Olalla, J. M. Medina-Sánchez, and P. Carrillo, “Fluctuation at high temperature combined with nutrients alters the thermal dependence of phytoplankton,” Microbial Ecology, vol. 83, no. 3, pp. 555–567, 2022. DOI: 10.1007/s00248-021-01787-8.

[10] L. Fritz and R. E. Triemer, “A rapid simple technique utilizing calcofluor white M2R for the visualization of dinoflagellate thecal plates,” Journal of Phycology, vol. 21, no. 4, pp. 662–664, 1985. DOI: 10.1111/j.0022-3646.1985.00662.x.

[11] T. H. Abé, Studies on the family Peridinea: An unfinished monograph of the armoured Dinoflagellates. Publications of the Seto Marine Biological Laboratory, Special Publication Series, no. 6, pp. 1–409, 1981.

[12] E. Balech, “Una especie nueva del género Fragilidium (Dinoflagellata) de la bahía de Chamela, Jalisco, México,” Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología, vol. 58, no. 2, pp. 479–485, 1988.

[13] S. Licea, J. L. Moreno, H. Santoyo, and G. Figueroa, Dinoflageladas del Golfo de California, La Paz, Mexico: UABCS-FOMES-SEP-PROMARCO, 1995.

[14] J. L. Moreno, S. Licea, and H. Santoyo, Diatomeas del Golfo de California, La Paz, Mexico: Universidad Autónoma de Baja California Sur, 1996.

[15] C. R. Tomas, Ed., Identifying Marine Phytoplankton. Amsterdam, Netherlands: Elsevier, 1997.

[16] J. Larsen and N. L. Nguyen, Potentially Toxic Microalgae of Vietnamese Waters, vol. 140, pp. 5–216. Copenhagen, Denmark: Council for Nordic Publications in Botany, 2004.

[17] L. Nguyen-Ngoc and J. Larsen, “On the genus Alexandrium (Dinoflagellata) in Vietnamese waters: two new records of A. satoanum and A. tamutum,” in Proc. Int. Conf. Harmful Algae, Ø. Moestrup et al., Eds., Copenhagen: International Society for the Study of Harmful Algae & IOC of UNESCO, 2008, pp. 216–218.

[18] L. Nguyen-Ngoc, T. Ho-Van, and J. Larsen, “A taxonomic account of Ceratium (Dinoflagellates) in Vietnamese waters,” Thailand Nat. Hist. Mus. J., vol. 6, no. 1, pp. 25–59, 2012.

[19] H. Doan-Nhu, L. Nguyen-Ngoc, N. T. M. Anh, J. Larsen, and N. C. Thoi, “Diatom genus Chaetoceros Ehrenberg 1844 in Vietnamese waters,” Nova Hedwigia Beiheft, vol. 143, pp. 159–222, 2014. DOI: 10.1127/1438-9134/2014/009.

[20] L. Phan-Tan, L. Nguyen-Ngoc, and H. Doan-Nhu, “Species diversity of sections Conica and Tabulata in the genus Protoperidinium (Dinophyceae) from tropical waters of the South China Sea,” Nova Hedwigia, vol. 103, no. 3–4, pp. 515–545, 2016. DOI: 10.1127/nova_h edwigia/2016/0369.

[21] L. Phan‐Tan, L. Nguyen‐Ngoc, H. Doan‐Nhu, R. Raine, and J. Larsen, “Species diversity of Protoperidinium sect. Oceanica (Dinophyceae, Peridiniales) in Vietnamese waters, with description of the new species P. larsenii sp. nov.,” Nordic Journal of Botany, vol. 35, no. 2, pp. 129–146, 2017. DOI: 10.1111/njb.01230.

[22] M. D. Guiry, AlgaeBase. World-wide electronic publication, National University of Ireland, Galway, 2010. [Online]. Available: http://www.algaebase.org [accessed November 10, 2024].

[23] A. Sournia, Ed., Phytoplankton manual. Paris: UNESCO, 1978.

[24] J. R. Bray and J. T. Curtis, “An ordination of the upland forest communities of southern Wisconsin,” Ecological Monographs, vol. 27, no. 4, pp. 326–349, 1957. DOI: 10.2307/1942268.

[25] K. R. Clarke and R. M. Warwick, “A further biodiversity index applicable to species lists: variation in taxonomic distinctness,” Marine Ecology Progress Series, vol. 216, pp. 265–278, 2001. DOI: 10.3354/meps 216265.

[26] K. R. Clarke and R. M. Warwick, Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. Plymouth, UK: Primer-E Ltd., 2001, 176 pp.

[27] American Public Health Association, American Water Works Association, and Water Environment Federation, Standard Methods for the Examination of Water and Wastewater. Washington, DC: American Public Health Association, 1998.

[28] P. Giraudoux, pgirmess: Data Analysis in Ecology, version 1.6.7, CRAN, 2017.

[29] H. Wickham and C. Sievert, ggplot2: Elegant Graphics for Data Analysis. New York, NY, USA: Springer, 2009.

[30] J. Oksanen, Vegan: Ecological Diversity, Version 2.5-5, 2019.

[31] T. Hothorn, K. Hornik, M. A. Van De Wiel, and A. Zeileis, “Implementing a class of permutation tests: the coin package,” Journal of Statistical Software, vol. 28, pp. 1–23, 2008. DOI: 10.18637/jss.v028.i08.

[32] K. Slowikowski, A. Schep, S. Hughes, K. T. Dang, S. Lukauskas, J. O. Irisson, Z. N. Kamvar, T. Ryan, D. Christophe, H. Yutani, P. Gramme, A. M. Abdol, M. Barrett, R. Cannoodt, M. Krassowski, M. Chirico, P. Aphalo, and H. Yutani, Automatically position non-overlapping text labels with ‘ggplot2’. R Package, Version 0.9.1, 2021.

[33] N. N. Lam, N. T. M. Anh, D. N. Hai, and T. H. Van, “Seasonal variations in the abundance of phytoplankton in the shallow waters of Cua Be River Estuary, Nha Trang Bay, Central Vietnam,” Collection of Marine Research Works, vol. 12, pp. 129–148, 2002.

34] M. C. Murrell, R. S. Stanley, E. M. Lores, G. T. DiDonato, L. M. Smith, and D. A. Flemer, “Evidence that phosphorus limits phytoplankton growth in a Gulf of Mexico estuary: Pensacola Bay, Florida, USA,” Bulletin of Marine Science, vol. 70, no. 1, pp. 155–167, 2002.

[35] H. T. N. Duyen, T. T. M. Hue, T. T. La Van, P. T. Luom, N. N. Lam, and D. N. Hai, “Phytoplankton community structure changes in Thi Nai lagoon (South-Central Vietnam) from 2004 to 2020,” Academia Journal of Biology, vol. 43, no. 4, pp. 75–94, 2021. DOI: 10.15625/2615-9023/16351

[36] S. H. Baek, S. Shimode, and T. Kikuchi, “Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: the role of temperature, light intensity and photoperiod,” Harmful Algae, vol. 7, no. 2, pp. 163–173, 2008. DOI: 10.1016/j.hal.2007.06.006.

[37] C. Álvarez-Góngora and J. A. Herrera-Silveira, “Variations of phytoplankton community structure related to water quality trends in a tropical karstic coastal zone,” Marine Pollution Bulletin, vol. 52, no. 1, pp. 48–60, 2006. DOI: 10.1016/j.marpolbul.2005.08.006.

[38] M. Mochizuki, N. Shiga, M. Saito, K. Imai, and Y. Nojiri, “Seasonal changes in nutrients, chlorophyll a and the phytoplankton assemblage of the western subarctic gyre in the Pacific Ocean,” Deep Sea Research Part II: Topical Studies in Oceanography, vol. 49, no. 24–25, pp. 5421–5439, 2002, DOI: 10.1016/S0967-0645(02)00209-6.

[39] J. A. Newton and R. A. Horner, “Use of phytoplankton species indicators to track the origin of phytoplankton blooms in Willapa Bay, Washington,” Estuaries, vol. 26, pp. 1071–1078, 2003. DOI: 10.1007/BF02803364.

[40] E. A. Petrov and A. N. Nevrova, “Structure and taxonomic diversity of benthic diatom assemblage in a polluted marine environment (Balaklava Bay, Black Sea),” Pol. Bot. J., vol. 55, no. 1, pp. 183–197, 2010.

[41] Y. Wang, J. H. Kang, Y. Y. Ye, G. M. Lin, Q. L. Yang, and M. Lin, “Phytoplankton community and environmental correlates in a coastal upwelling zone along western Taiwan Strait,” Journal of Marine Systems, vol. 154, pp. 252–263, 2016. DOI: 10.1016/j.jmarsys.2015.10.015.

Downloads

Published

17-04-2025

How to Cite

Huynh, T. N. D., Tran, T. M. H., Tran, T. L. V., Nguyen, N. L., & Doan, N. H. (2025). Temporal shifts in phytoplankton communities in Cam Ranh Bay. Vietnam Journal of Marine Science and Technology, 25(2), 171–185. https://doi.org/10.15625/1859-3097/22732

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.