Surface modification of waste gypsum for use as additive filler of greencomposites based on poly(butylene adipate terephthalate)

Do Van Cong, Mai Duc Huynh, Nguyen Huu Dat, Nguyen Quang Minh, Tran Huu Trung, Nguyen Thi Thu Trang, Kieu Thi Quynh Hoa, Nguyen Vu Giang
Author affiliations

Authors

  • Do Van Cong Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam https://orcid.org/0000-0002-0024-1424
  • Mai Duc Huynh Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
  • Nguyen Huu Dat Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam https://orcid.org/0000-0002-0723-3822
  • Nguyen Quang Minh Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
  • Tran Huu Trung Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam
  • Nguyen Thi Thu Trang Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam https://orcid.org/0000-0003-3195-7561
  • Kieu Thi Quynh Hoa Institute of Biotechnology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam https://orcid.org/0009-0004-3875-9933
  • Nguyen Vu Giang Institute for Tropical Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam; Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam

DOI:

https://doi.org/10.15625/2525-2518/22501

Keywords:

Polybutylene adipate terephthalate, waste gypsum, ethylene bis stearamide, biocomposites, Hydrolysis

Abstract

Using fillers to reinforce and improve the desired properties of polymer composite materials is the desire of researchers. In which, the dispersion ability, interaction and adhesion between fillers and polymer matrix are the key to determine the properties of the obtained materials. This study focuses on surface modification of waste gypsum particles with ethylene bis stearamide (EBS) to use it as a reinforcing filler for polybutylene adipate terephthalate (PBAT), a biodegradable polymer with many advantages such as high flexibility and good barrier properties. Using energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) images observation confirmed that the WGS granules were successfully modified with the suitable EBS content of 5 wt.%. Thanks to the modification, the processability, dispersion and adhesion of WGS to the PBAT matrix were improved, as results, the mechanical and thermal performances as well as hydrolytic resistance of obtained biocomposites was also enhanced.

Downloads

Download data is not yet available.

References

1. Burford R., Polymers: A historical perspective. Journal and Proceedings of the Royal Society of New South Wales, 152 (473/474) (2019) 242–250. https://search.informit.org/doi/10.3316/informit.912126913382331

2. Bazli L., Bazli M., A review on the mechanical properties of synthetic and natural fiber-reinforced polymer composites and their application in the transportation industry, J. Compos. Compd. 3 (9) (2021) 262–274. https://doi.org/10.52547/jcc.3.4.6

3. Arutyunov V. S., Lisichkin G. V., Energy resources of the 21st century: problems and forecasts. Can renewable energy sources replace fossil fuels, Russ. Chem. Rev. 86 (2017) 777. DOI 10.1070/RCR4723

4. Spierling S., Knüpffer E., Behnsen H., Mudersbach M., Krieg H., Springer S., Albrecht S., Herrmann C., Endres H.-J., Bio-based Plastics - A Review of Environmental, Social and Economic Impact Assessments, J. Clean. Prod. 185 (2018) 476-491. https://doi.org/10.1016/j.jclepro.2018.03.014

5. Jian J., Xiangbin Z., Xianbo H., An Overview on Synthesis, Propertiesand Applications of Poly(butylene-adipate-co-terephthalate)–PBAT, Adv. Ind. Eng. Polym. Res. 3 (1) (2020) 19-26. doi:10.1016/j.aiepr.2020.01.001

6. Clizia A., Massimiliano B., Addition of thermoplastic starch (TPS) to binary blends of poly (lactic acid) (PLA) with poly (butylene adipate-co-terephthalate) (PBAT): Extrusion compounding, cast extrusion and thermoforming of home compostable materials. Chin. J. Polym. Sci. 40 (10) (2022) 1269–86. http://dx.doi.org/10.1007/s10118-022-2734-0

7. Gui H., Zhao M.Y., Zhang S.Q., Yin R.Y., Active antioxidant packaging from essential oils incorporated polylactic acid/poly (butylene adipate-co-terephthalate)/thermoplastic starch for preserving straw mushroom, Foods, 11 (15) (2022) 2252. https://doi.org/10.3390/foods11152252

8. Yang X., Wang M., He C., Yang X., Duan G., Wang W., Preparation and properties of PLA/PBAT composites modified with different filler particles, Mater. Lett. 372 (2024) 136960. http://dx.doi.org/10.2139/ssrn.4811066

9. Giang N. V., Trung D. Q., Trung T. H., Huynh M. D., Minh N. Q., Study on the physical and mechanical properties and structure of the composite materials based on polypropylene and sodium dodecyl sulfate modified gypsum, Vietnam J. Chem. 52 (1) (2014) 101-106. https://doi.org/10.15625/4980

10. Ramos F. J. H. T. V., Mendes L. C., Recycled high-density polyethylene/gypsum composites: evaluation of the microscopic, thermal, flammability, and mechanical properties, Green Chem. Lett. Rev. 7 (2) (2014) 199–208. https://doi.org/10.1080/17518253.2014.924591

11. Lin W.-T., Korniejenko K., Mierzwiński D., Łach M., Cheng A., Lin K.-L., Feasibility Study of Waste Gypsum as a Full Replacement for Fine Aggregates of Controlled Low-Strength Material, Mater. Proc. 2023, 13, 19. https://doi.org/10.3390/materproc2023013019

12. Jiang Z.-Y., Sun X.-P., Luo Y.-Q., Fu X.-L., Xu A., Bi Y.-Z., Recycling, reusing and environmental safety of industrial by-product gypsum in construction and building materials, Constr. Build. Mater. 432 (2024) 136609, http://dx.doi.org/10.1016/j.conbuildmat.2024.136609

13. Zhao Y. Q., Involvement of Gypsum (CaSO4·2H2O) in Water Treatment Sludge Dewatering: A Potential Benefit in Disposal and Reuse, Sep. Sci. Technol. 41 (2006) 2785-2794. http://dx.doi.org/10.1080/01496390600785558

14. Denev Y. G., Denev G. D., & Popov A.N., Surface Modification of Phosphogypsum Used as Reinforcing Material in Polyethylene Composites, J. Elastomers Plast. 41 (2) (2009) 119–132. doi:10.1177/0095244308092436

15. Sun M., Sun Q., Zhang J., Sheng J., Modified phosphogypsum used as reinforcing material in composites, J. Reinf. Plast. Compos. 42 (3-4) (2023) 85-94. doi:10.1177/07316844221102935

16. Doleželová M., Krejsová J., Scheinherrová L., Keppert M., Vimmrová A., Investigation of environmentally friendly gypsum based composites with improved water resistance, J. Clean. Prod. 370 (2022) 133278. https://doi.org/10.1016/j.jclepro.2022.133278

17. Trung T. H., Huynh M. D., Cong D. V., Giang N. V., Mechanical properties and flame resistance of composite based on high density polyethylene/ethylene vinyl acetate blend and novel organically modified waste gypsum, Vietnam J. Sci. Technol. 56 (3B) (2018) 87-95. http://dx.doi.org/10.15625/2525-2518/56/3B/12915

18. Trung T. H., Huynh M. D., Mai T. T., Dat N. H., Linh N. T. D., Trang N. T. T., Hoang T., Giang N. V., Study on UV resistance of high-density polyethylene composite using waste gypsum, Vietnam Journal of Catalysis and Adsorption, 10 (1) (2021) 153-157. http://dx.doi.org/10.51316/jca.2021.112

19. Giang N. V., Study on the rheological, physico-mechanical and thermal properties of polyvinylchloride/waste-gypsum polymer composites, Vietnam J. Sci. Technol. 48 (2) (2012) 99-107. https://doi.org/10.15625/0866-708X/48/2/1131

20. Giang N. V., Kang H.-J., Kang S.-Y., Jung D.-W., Ko J.-W., Hoang T., Tham D. Q., Kim M.-Y., Rheological Studies, Physico-Mechanical Properties, Thermal Properties and Morphology of PVC/Waste-Gypsum Composites, Compos. Technol. 27 (3) (2014) 115-121. http://dx.doi.org/10.7234/composres.2014.27.3.115

21. Murariu M., Ferreira A., Pluta M., Bonnaud L., Alexandre M., Dubois P., Polylactide (PLA)–CaSO4 composites toughened with low molecular weight and polymeric ester-like plasticizers and related performances, Eur. Polym. J. 44 (11) (2008) 3842–3852. https://doi.org/10.1016/j.eurpolymj.2008.07.055

22. M. D. Huynh, T. H. Trung, N. H. Dat, N. V. Giang, The melting rheology, mechanical properties, thermal stability and morphology of polylactic acid/ethylene bis stearamide modified gypsum composite, Vietnam J. Chem. 58 (2) (2020) 251-255. https://doi.org/10.1002/vjch.201900187

23. Kong T. W., Kim I. T., Sinha T. K., Moon J., Kim D. H., Kim I., Na K., Kim M.-W., Kim H.-L., Hyeong T., Oh J. S., Effect of Surface Modifying Agents Towards Enhancing Performance of Waste Gypsum Based PBAT Composite, Elastom. Compos. 55 (4) (2020) 347~353. http://doi.org/10.7473/EC.2020.55.4.347

24. Kong T. W., Kim I. T., Moon J., Sinha T. K., Kim D. H., Kim I., Na K., Choi K. W., Oh J. S., Comparing Waste Gypsum with CaCO3 as Filler Towards Developing Low-cost PBAT Composites, Polym. Korea, 45 (1) (2021) 119-128. http://dx.doi.org/10.7317/pk.2021.45.1.119

25. Ning N., Fu S., Zhang W., Chen F., Wang K., Deng H., Zhang Q., Fu Q., Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization, Prog. Polym. Sci. 37 (10) (2012) 1425-1455. https://doi.org/10.1016/j.progpolymsci.2011.12.005

26. Feng J., Venna S. R., Hopkinson D. P., Interactions at the interface of polymer matrix-filler particle composites, Polymer, 103 (2016) 189-195. https://doi.org/10.1016/j.polymer.2016.09.059

27. Olonisakin K., Fan M., Xiang Z., Ran L., Lin W., Zhang W., Wenbin Y., Key Improvements in Interfacial Adhesion and Dispersion of Fibers/Fillers in Polymer Matrix Composites; Focus on PLA Matrix Composites, Compos. Interfaces, 29 (10) (2021) 1071–1120. https://doi.org/10.1080/09276440.2021.1878441

28. Jang H. G., Jo J. Y., Jung U., Kim Y. N., Jung Y. C., Lee H., Lee D. C., Kim J., Revealing the Filler–Matrix Interfacial Interactions: Real-Time Observation with Mechano-Responsive Spiropyran Microbeads, ACS Appl. Mater. Interfaces. 16 (35) (2024) 46719-46727. http://dx.doi.org/10.1021/acsami.4c07977

29. Deshoulles Q., Gall M. L., Benali S., Raquez J-M., Dreanno C., et al.. Hydrolytic degradation of biodegradable poly(butylene adipate-co-terephthalate) (PBAT) - Towards an understanding of microplastics fragmentation, Polym. Degrad. Stab. 205 (2022) 110122. DOI 10.1016/j.polymdegradstab.2022.110122

30. Wang Y., Chen C., Li J., Huang J., Xiong L., Effect of carbodiimides on the compatibility and hydrolytic behavior of PLA/PBAT blends, Green Mater. 2024, preprint. https://doi.org/10.1680/jgrma.24.00072.

Downloads

Published

21-10-2025

How to Cite

[1]V. C. Do, “Surface modification of waste gypsum for use as additive filler of greencomposites based on poly(butylene adipate terephthalate)”, Vietnam J. Sci. Technol., vol. 63, no. 6, Oct. 2025.

Issue

Section

Materials

Funding data

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 

You may also start an advanced similarity search for this article.